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 EXECUTIVE SUMMARY  
 
This deliverable corresponds to task 5.1, 5.2 and 5.3. It describes the hardware and 
software requirements and specifications for the mapping and localization frontend and 
storage concepts in the cloud-based backend. 
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2 INTRODUCTION 

2.1 Scope of the Document 

This deliverable relates to task 5.1, 5.2 and 5.3 and describes the hardware and software 
requirements and specifications for the mapping and localization frontend as well as the 
storage and interfacing concepts in the cloud-based backend. In particular it covers the 
following key aspects: 

 

● Localization frontend: Requirements and specifications for the software module that 
allows the car to localize precisely during online operation. 

● Mapping frontend: Requirements and specifications for how to transmit map-data 
from the car to the cloud-based backend. 

● Mapping backend: 
○ Interfaces describing how to interact with the mapping backend, how to issue 

queries and receive data during operation, as well as during offline data 
exchange. 

○ Applications and functionality available in the mapping backend. 
○ Storage concepts for the mapping data. 

 

2.2 General Comments 

In this document, we follow a clear distinction between metric mapping/localization and 
semantic mapping. With metric mapping/localization we refer creating a geometric map that 
can be used for precise localization of the vehicles e.g. that allows estimating a 6DoF 
transformation between the vehicle’s body-fixed coordinate frame and some well-defined 
global coordinate frame of reference. With semantic mapping, we refer to the labeling, 
storage and retrieval of semantically annotated objects, such as zebra crossings, traffic 
lights, lane markings, etc. that are used to understand and interpret the scenarios on the 
road on a semantical level. 
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3 REQUIREMENTS  

In this section, we focus on the requirements of the software architecture and infrastructure 
necessary to achieve the metric localization and mapping, as well as the semantic (offline) 
mapping tasks specified in work-package 5. A detailed and broader overview of the 
requirements for WP5 including also the involved sensor suite and calibration can be found 
in section 4.4 of deliverable D1.1.  

The software architecture and infrastructure requirements arise from two aspects, namely the 
scope and size of the target scenarios on the one side and the use-cases of the localization 
and mapping system on the other side.  

As we aim at deploying multiple automated vehicles in large urban environments, it is crucial 
to provide a localization and mapping system that scales appropriately to areas of substantial 
size and that allows multiple vehicles to communicate, cooperate and exchange mapping 
data during operation.  

To illustrate the latter, we enumerate an exemplary list of common and significant use-cases 
below. Note that this list is not exhaustive but merely serves as a guide to define and justify 
the requirements.  

 

• Query pose. 
Given (a) camera image(s) or keypoints with feature descriptors, a 6DoF pose of the 
vehicle wrt. the map reference frame is queried against a metric-map available in the 
backend.  

• Query near-by metric-map data for on-car localization. 
Given a rough estimate of the car’s pose in the map, near-by data for localizing on the 
car (e.g. near-by landmarks) are requested from the backend. 

• Query for near-by semantic objects of some kind. 
Given an estimate of the car’s pose, semantic objects of some kind (e.g. zebra-
crossings) are requested from the backend. 

• Query for all semantic objects of a kind. 
Requests all semantic objects of some kind (e.g. zebra-crossings) available in some 
semantic map in the backend. 

• Augment the/a metric-map with online localization/sensor data. 
Transmits data, such as images, keypoints, descriptors, localization estimates, etc. 
from the car to the mapping backend during an operation and augments a metric-map 
in the backend with this data on the fly. 

• Upload a dataset for archiving. 
After collecting sensor data during an operation, the dataset is uploaded onto the 
backend and archived. 

• Download a metric-map for localization on the car. 
A full metric-map is downloaded from the backend to run localization on the car 
during a subsequent operation. 

• Download an archived dataset for on-desk inspection. 
One or more datasets in the backend are downloaded in order to analyse and inspect 
them offline. 
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• Build a metric-map from one or more archived dataset. 
Computes a new metric-map from the sensor data recorded in a given archived 
dataset. 

• Augment a metric-map with one or more archived datasets. 
Adds more sensor data from one or more archived datasets to an already existing 
metric-map. 

• Run Loop-Closure, Bundle-Adjustment, Map-Summarization, etc. on a metric-map. 
Runs various algorithms on an already existing metric-map. 

• Query for a GPS estimate given a pose wrt. the map reference frame. 
Given a 6DoF pose of the vehicle wrt. the map reference frame, a (rough) GPS 
estimate for this pose is calculated. 

 

From this list, we derive the following additional requirements: 

 

• Access of the vehicles to a shared map source during operation. This access is time-
critical and only small delays between query and response are acceptable. It may, 
however, be limited to the exchange of only small amounts of data.  

• Offline access to the mapping framework must be possible including the exchange of 
large amounts of sensor data. 

• Various software tools to create and maintain maps for (metric) localization as well as 
scene interpretation and maintenance and reasoning about semantic data must be 
available. 

• A data archive must be available, allowing to store and retrieve datasets for map building, 
map augmentation, other forms of post-processing or later inspection and evaluation. 
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4 FRAMEWORK ARCHITECTURE 

4.1 Overview 

Given the requirements specified in the previous sections, as well as in section 4.4. of 
deliverable D1.1, we propose the following cloud-based framework architecture for metric 
localization and mapping together with semantic mapping and semantic reasoning: 

 

• In order to separate data storage from applications and their service endpoints on the 
cloud-based backend side and the client side applications on the cars, a multi-layer 
architecture is envisioned. A conceptual drawing of this architecture can be found in 
figure 1 below.  

• On the data layer, separate blocks for the metric map data and semantic data (object 
store with databases) are provided. This allows integrating the already existing 
multiagent-mapping framework from ETHZ [1, 2].  

• On the application level, various software modules offer a wide range of functionality 
such as map building, map curation, localization, semantic labeling as well as handling 
semantic queries of any kind.  

• In order to offer a transparent interface to the client side (the cars), service endpoints are 
employed implementing a RESTful web-interface to the services available in the mapping 
framework.  

 

4.2 Data Store Layer 

All data which will be entered into and processed by our cloud framework will be maintained 
in the data store layer. In this layer, we distinguish three different stores. Each of these 
stores will be designed to efficiently represent and operate on a particular data model. In 
brief terms, the stores and their fundamental data models will be: 

 

• An object store for unstructured information (flat data model) 
• A document store for semi-structured key-value information (associative array model) 
• A knowledge store for structured semantic information (RDF or graph data model) 

 

Note that the above data models are not necessarily disjunct. Thus, graph information may 
also be represented using associative arrays, and the flat data model is generally 
fundamental to all other models. 

1 Cieslewski, Titus et al. "Map api-scalable decentralized map building for robots." Robotics and Automation 
(ICRA), 2015 IEEE International Conference on 26 May. 2015: 6241-6247. 
2 Dymczyk, Marcin et al. "The gist of maps-summarizing experience for lifelong localization." Robotics and 
Automation (ICRA), 2015 IEEE International Conference on 26 May. 2015: 2767-2773. 
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4.2.1 Object Store (IBM, ETHZ) 

As pointed out above, the object store will be the most fundamental component of the data 
store layer. Here, information can be stored without imposing any assumptions about the 
nature, format, and meaning. The cloud object store thus adheres to the basic concepts of a 
file system, decentrally laid out over a cluster of distributed storage devices. 

Technologically, we are currently assessing different object store solutions in the focus of 
scalability, maintainability, and safety. Possible candidate solutions are: 

 

• OpenStack Swift (http://docs.openstack.org/developer/swift) 
• IPFS (https://ipfs.io) 
• Ceph (http://ceph.com) 

 

In particular, we will utilize the object store to maintain our metric maps in the cloud, such 
that they can efficiently be accessed and shared by instances of the Mapping & Localization 
application. Presently, metric maps are the only foreseen type of custom objects whose 
structure needs to be specified. This specification is given below. 

 

  
 
 

 

http://ceph.com/
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4.2.1.1 Metric Map (ETHZ) 

The Metric-Map contains all data necessary to localize the vehicles in 3D space precisely 
wrt. a common, well-defined coordinate frame of reference using cameras, IMUs and wheel-
odometry sensor data.  

In particular, it contains raw camera images, 3D points in space, referred to as landmarks, 
2D feature descriptors, IMU and wheel-odometry data, pose-graphs representing trajectories 
of the vehicles and missions corresponding to individual traversals through the mapped area. 
Most of these elements are indexed and referenced within the Metric-Map by 128 bit Hash-
IDs. 

A detailed list of Metric-Map’s elements and how they are referenced can the found in the 
table below. 

 

Missions A single dataset recorded during a “run” through 
the mapped environment can be added to the 
metric-map as a mission. A map can consist of 
multiple missions, referred to as a multi-mission-, 
or multi-session map. 

mission_id 

Visual 
Frame 

A visual frame corresponds to a single camera 
image. 

visual_frame_id 

Keypoint Refers to an x,y location on a camera image. index 

Binary 
Descriptor 

Feature-descriptor for a keypoint. Currently either 
BRISK or Freak. 

index 

Visual 
NFrame 

Collection of multiple Visual Frames recorded 
simultaneously (multi-camera rig). 

visual_nframe_id 

Vertex Consists of a reference to a Visual NFrame, a 
6DoF pose wrt. the mission baseframe, IMU data 

vertex_id 

Edge Connects two vertices along a mission. edge_id 

Landmark Consists of a 3D point expressed wrt. to a near-by 
vertex, and a list of observations 
(VisualNFrameId, frame index, keypoint index) 

global_landmark_id, 
store_landmark_id 

Map  map_id 
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At the time of writing this document, the Metric-Map is stored on disk as a list of .table and 
.yaml files grouped in a folder. It can be serialized and deserialized to/from memory using 
Google’s protobuf framework. 

The storage concept (file format, etc.) may be subject to change in the future. 

 

4.2.2 Document Store (IBM) 

Another component of the data store layer is the document store. Here, we consider a 
document to represent semi-structured information complying to the associative array data 
model. That is, a document will most generically be composed of a set of key-value pairs. 

The important aspect of the document store is that it allows for efficient retrieval of 
information based on key-value queries. To these ends, the document store will be 
responsible for creating suitable index representations for a set of documents sharing the 
same keys and value types. 

The distributed document store solutions currently under assessment are: 

• ElasticSearch+Lucene (https://www.elastic.co) 
• MongoDB (https://www.mongodb.com) 
• Apache Cassandra (http://cassandra.apache.org) 

 

4.2.3 Knowledge Store (IBM) 

Last but not least, we will enable our data store layer to maintain and retrieve structured, 
semantic information, i.e., ontological knowledge descriptions. Whilst such descriptions may 
equivalently be mapped to a key-value store, the RDF or graph data models are much better 
suited to perform efficient queries (reasoning) over the represented knowledge. The 
knowledge store will thus add another level of structure assumptions and specialization to 
our data store layer. 

According to any of the assumed standard data models for knowledge representation, i.e. 
RDF or graph, semantic knowledge will be composed of a set of triplets of the general form 
subject-predicate-object, e.g., “Stop sign - is a - traffic sign.” These triplets can, for instance, 
be mapped to a directed graph whose connectivity encodes them as directed edges from 
subjects to objects, and the predicates becomes properties of these edges. In a 
decentralized solution, the graph is then split into multiple subgraphs, distributed over cluster 
nodes. 

So far, we have assessed the following distributed knowledge store candidates: 

 

• OrientDB (http://orientdb.com/orientdb) 
• Apache Jena (https://jena.apache.org) 

 

  
 
 

 

https://www.elastic.co/
https://www.mongodb.com/
http://cassandra.apache.org/
http://orientdb.com/orientdb
https://jena.apache.org/
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4.3 Application Layer 

The application layer sits between the data store layer and the API layer, and consists in 
computational modules. In a distributed, virtualized framework, it will be important to 
distinguish between the application images, i.e., the algorithmic recipes, and their runtime 
instantiations. Depending on the client demand of an application’s particular service, a 
virtually unlimited number of instances may thus be spawned from the same image. 

In our UP-Drive framework, we will employ the Docker standard (https://www.docker.com) in 
order to represent and manage application images and their instantiations (containers). 

 

4.3.1 Metric Localization and Mapping 

The Metric Mapping & Localization application offers a list of functionality related to the 
creation and curation of a metric map as well as the metric localization. It is deployed as 
software package on the IBM cloud infrastructure and based on the multiagent-mapping 
framework developed at ETHZ. 

The cars interact with the Metric Mapping & Localization application through a web-interface 
(see Service Endpoints) allowing uploading sensor data, formulating specific metric-map 
queries during online operation and receiving metric-map data. 

The Metric Mapping & Localization application further allows interaction with available metric-
maps (see Data Storage) through a console interface and through the execution of scripted 
jobs. 

Functionality 

• Visual(-Inertial) Odometry 
• Place Recognition 
• Metric localization 
• Bundle Adjustment 
• (Dense Reconstruction) 
• Map Summarization 

Data Input 

• Camera images 
• IMU data 
• Wheel odometry data  
• GPS data 

Data Output 

• 6DoF transformations between car body frame and metric map fixed frame of 
reference. 

• Arbitrary metric map data (features, landmarks, vertices, …) 
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Interface 

Protobuf serialization/deserialization of metric map data (see Data Storage). 

RESTful web interface, implementing a Request-Reply pattern (see Service Endpoints). 

Use Cases 

• Load images, IMU and wheel odometry data of a recorded dataset, create a metric 
map of it (run visual-odometry estimation, Loop-Closure, Bundle Adjustment). 

• Augment an existing metric map with a new dataset (run metric localization/Loop- 
Closure, add new data structures (vertices, landmarks, …) to the map, run Bundle 
Adjustment). 

• Query 6DoF pose wrt. a global coordinate frame given a (set of) input image(s) or a 
set of 2D features. 

• Query local submap for onboard localization given a (set of) input image(s) or a set 
of 2D features. 

• Query 6DoF pose of a pose-graph vertex wrt. a global coordinate frame or any other 
well-defined frame of reference. 

• Query for a set of spatially nearby landmarks given a rough pose estimate. 
• Query for a set of likely co-observable landmarks given a rough pose estimate and a 

set of recently observed landmarks. 

 

4.3.2 Scene Interpretation 

In the scope of this deliverable, the scene interpretation application has been considered in 
terms of its requirements. The introductory diagram describing our cloud framework should 
therefore be thought of to represent this application in terms of a functional placeholder. Its 
details will instead be described in the upcoming UP-Drive deliverable D6.1: “Software 
specification and architecture for scene understanding”. 

Here, we have foreseen the following requirements of the scene interpretation application: 

 

• Access to information contained in a metric map: This can either be achieved through 
the Mapping & Localization API or through the more general documents API, 
assuming that all metric map information will be represented redundantly in the 
document store. 

• Access to key-value information and semantic information: Retrieval and storage can 
be realized through the documents API and the knowledge API. 
 

4.4 Client API Layer 

4.4.1 Service Load Balancer 

The service load balancer is the common entry gate for all clients in order to establish the 
communication with a service endpoint instance. Alternatively, a client may directly contact a 
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particular service endpoint instance, in which case the automated load balancing mechanism 
will be intentionally circumnavigated. 

Once contacted by a client, the service load balancer will dispatch all further client 
communication to the most available service endpoint instance using the HTTP response 
status code 303 (see other). Means of determining the availability of a service endpoint 
instance need to be defined, but may involve simple measures such as the number of 
connected clients. 

 

4.4.2 Service Endpoints 

Service endpoint instances provide a REST (Representational State Transfer) interface to 
clients. Calls made to their API will generally be proxied into the cloud application and data 
layer of our framework. Direct client access of these layers is conceptually permitted, a 
design decision which we justify as follows:  

 
• Whilst we will commit to an endpoint API at a relatively early stage of the UP-drive 

project, the annotator and storage API may be revised and adapted frequently. As long 
as clients remain restricted to exclusively communicate through the high-level endpoint 
API, such changes remain transparent and the clients are largely unaffected by ongoing 
developments. 
 

• The component design of our planned framework entails redundancy of the stored 
information due to licensing and optimization constraints. Thus, consistency can only be 
assured by proxying API calls through a singular service endpoint. Note that this principle 
does not necessarily jeopardize scalability as we may run several of such endpoint 
instances, each serving a limited number of clients only. 

 
 
In the following sections, we will sketch a specification draft of our endpoint API in terms of 
the different service calls we plan to provide. For formal simplicity, this draft consists of tables 
of the following format: 

Method The calling method, e.g., HTTP POST/PUT/GET/DELETE/... 

URI The resource identifier scheme of the call, usually of the form: 

http(s)://host/collection/[element_id/][?param=value] 

Summary A comprehensive summary of this API call. 

Arguments A brief description of the calling arguments: 

● element_id: <type> (mandatory arguments in bold face) 
● param: <type> (optional arguments in normal face) 
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● data: <content-type> (data supplied with POST/PUT requests) 

Response A formal description of the call response in JSON notation: 

● <type> (primitive type, e.g., <string>, <boolean>, etc.) 
● {“member”: <type>, ...} (struct) 
● [<type>] (array) 

 

Calls will be grouped according to the functional component of the framework they contribute 
to. Each such group is represented by a unique top-level collection in the REST API: objects, 
maps, scenes, etc. 

 

4.4.2.1 Object Store 

To store or retrieve objects to or from the cloud framework, we plan to provide respective 
endpoint calls. These calls handle objects as files, referred to using a unique object identifier. 
The identifier format thereby depends on the storage solution implemented in the 
framework’s data store layer and may, for instance, simply represent a hash value computed 
from an object’s content. 
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Method HTTP POST 

URI http(s)://host/objects 

Summary Store object in the cloud. 

Arguments data: <content-type> (file object of arbitrary type) 

Response { 

  “success”: <bool>, 

  “message”: <string>, 

  “object_id”: <id> 

} 

 

Method HTTP GET 

URI http(s)://host/objects/<object_id> 

Summary Retrieve object from the cloud. 

Arguments object_id: <id> 

Response <content-type> (file object of stored type) 

 

Note that deleting or modifying a cloud object through the API is permitted as it would violate 
the append-only assumption behind our framework, putting its consistency at risk. 

 

4.4.2.2 Document Store 

Pieces of key-value information will enter the cloud framework through the documents API. 
We will generally assume JSON-encoded formatting of documents and thus adhere to a 
widely used Web standard for representing key-value information in a structured manner. 

Often, it will be useful to search documents stored in the cloud by the content they provide. 
To allow for efficient searching, documents will be associated with indexes. Literally, a 
document thus becomes an element of an index collection which has been created to 
accelerate the search for a set of documents sharing the same key-value semantics. 
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We are planning to support indexing of the following value types: 

• strings and numbers 
• timestamps 
• geospatial coordinates and polygons 

 

Method HTTP POST 

URI http(s)://host/documents 

Summary Create a document index in the cloud. 

Arguments index_id: <id> 
data: <application/json> (JSON-encoded index creation parameters) 

 
Index creation parameters may comprise: 

• index settings (sharding, replication) 
• mappings (field type and format information) 

Response { 

  “success”: <bool>, 

  “message”: <string>, 

  “index_id”: <id> 

} 

 

Method HTTP POST 

URI http(s)://host/documents/<index_id> 

Summary Store a document in the cloud. 

Arguments index_id: <id> 
data: <application/json> (JSON-encoded document) 

Response { 

  “success”: <bool>, 

  “message”: <string>, 
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  “index_id”: <id>, 

  “document_id”: <id> 

} 

 

Method HTTP GET 

URI http(s)://host/documents/<index_id>/<document_id> 

Summary Retrieve a document from the cloud. 

Arguments index_id: <id> 
document_id: <id> 

Response <application/json> (JSON-encoded document) 

 

Method HTTP GET 

URI http(s)://host/documents/<index_id>/search 

Summary Search the cloud document store. 

Arguments index_id: <id> 
data: <application/json> (JSON-encoded search) 

Response <application/json> (JSON-encoded search results) 

 

4.4.2.3 Knowledge Store 

Semantic knowledge will be maintained in the knowledge store and exposed to the clients 
through the knowledge API. To represent semantic knowledge, we will again adhere to an 
open Web standard known as XML-encoded RDF (Resource Description Framework). Note 
that this standard follows a graph-based data model in which semantic information is stored 
in the form of subject-predicate-object triplets. 

A mandatory operation over semantic knowledge is semantic querying. We will therefore 
provide an endpoint service call in the knowledge API which will allow clients to issue 
SPARQL (SPARQL Protocol and RDF Query Language) queries. 
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Method HTTP POST 

URI http(s)://host/knowledge 

Summary Store an RDF document in the cloud. 

Arguments data: <application/rdf+xml> (XML-encoded RDF document) 

Response { 

  “success”: <bool>, 

  “message”: <string>, 

  “document_id”: <id> 

} 

 

Method HTTP GET 

URI http(s)://host/knowledge/<document_id> 

Summary Retrieve an RDF document from the cloud. 

Argument
s 

document_id: <id> 

Response <application/rdf+xml> (XML-encoded RDF document) 

 

Method HTTP GET 

URI http(s)://host/knowledge/sparql?query=<encoded_query> 

Summary Issue a SPARQL query. 

Arguments encoded_query: <string> (URL-encoded SPARQL query) 

Response <application/sparql-results+xml> (XML-encoded query results) 
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Note that the above call interface will be compliant with the W3C recommendation for 
SPARQL queries. See also http://www.w3.org/TR/rdf-sparql-protocol. 

 

4.4.2.4 Metric Mapping and Localization 

The following list enumerates queries and responses illustrating how to interact with the 
metric map backend used for localization. The list is not exhaustive and may be adapted and 
extended to meet the needs within the projects at any time. 

Method HTTP GET 

URI http(s)://host/maps 

Summary Get all available maps. 

Arguments None 

Response [<id>] 

 

Method HTTP GET 

URI http(s)://host/maps/<map_id>/missions 

Summary Get all missions of a map. 

Arguments map_id: <id> 

Response [<id>] 

 

An analogous pattern is used to retrieve vertex ids of a mission, landmark ids of a vertex, 
landmark ids of a mission, or map, etc. 

 

Method HTTP GET 

URI http(s)://host/maps/<map_id>/missions/<mission_id>/vertices/<vertex_id>/fram
es/<frame_index>/keypoints 

  
 
 

 

http://www.w3.org/TR/rdf-sparql-protocol
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Summary Get keypoints of a visual frame. 

Arguments map_id: <id> 

mission_id: <id> 

vertex_id: <id> 

frame_index: <int> 

Response [[<float>, <float>]](array of keypoints [x, y]) 

 

Method HTTP GET 

URI http(s)://host/maps/<map_id>/protobuf 

Summary Get a full map as a protobuf object. 

Arguments map_id:  <id> 

Response [<int>] 

 

Method HTTP GET 

URI http(s)://host/maps/<map_id>/landmarks_with_descriptors 

Summary Get (all) landmarks with descriptors from the map. If a pose is specified, only 
landmarks seen from vertices within given radius around this pose and 
deviating in yaw-angle less than yaw_angle_deviation are returned. 

Arguments map_id:  <id> 
pose: <application/json> 

radius:  <float> 
yaw_angle_deviation:  <float> 

Response <application/json> (landmarks x,y,z wrt. global frame of reference, and 
one or more descriptors associated with each landmark.) 
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Method HTTP GET 

URI http(s)://host/maps/<map_id>/pose_to_gps 

Summary Given a pose wrt. the map reference frame, a (rough) GPS pose is estimated. 

Arguments map_id:  <id> 
pose: <application/json> 

Response { 

  “success”: <bool>, 

  “lat”: <float>, 

  “long”: <float>, 

  “heading”, <float>, 

  … additional available GPS data. 

} 

 

Method HTTP POST 

URI http(s)://host/maps/<map_id>/actions/<action_tag> 

Summary Run actions on a map. 

Arguments map_id:  <id> 
action_tag: <”bundle_adjust”|”summarize”|”loop_close”|...> 
data: <application/json> (action parameters, t.b.d.) 

Response { 

  “success”: <bool>, 

  “message”: <string> 

} 

 

Method HTTP POST 
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URI http(s)://host/maps/<map_id>/actions/localize 

Summary Query the map for a global localization pose estimate. 

Arguments map_id:  <id> 
data: <application/json> (images, or keypoints with descriptors, 
potentially a rough guess of the vehicle’s pose.) 

Response { 

  “success”: <bool>, 

  “p_W_I”: [<float>, <float>, <float>], 

  “q_W_I”: [<float>, <float>, <float>, <float>] 

} 

 

4.5 Client Applications 

4.5.1 Online Localization Module 

This software module is deployed on the car(s) and allows localizing the car precisely wrt. a 
well-defined coordinate frame of reference. For that, camera images, as well as IMU and 
wheel-odometry data are fetched from the DDS gateway and localization queries are issued 
against a metric-map either available online in the backend or downloaded from the backend 
prior to departing for the current operation. The connection to the designated service 
endpoint on the backend is established through a RESTful web-interface. 

Sensor and/or online localization data may be transmitted back to the backend on the fly. 

 

Functionality 

• Online localization of the car. 

Data Input 

• Camera images 
• IMU data 
• Wheel odometry data  
• (GPS) 

Data Output 
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• 6DoF transformations between car body frame and metric map fixed frame of 
reference. 

• Sensor and/or online localization data (images, localization estimates,  
landmark-keypoint matches, keypoints, descriptors, etc.). 

Interface 

RESTful web interface. 

 

4.5.2 Dataset Uploader 

This software module is deployed on the car(s) and allows uploading a collected dataset 
(.dat file) to the backend after finishing an operation for post-processing or archiving. The 
connection to the designated service endpoint on the backend is established through the 
RESTful web-interface described above, utilizing the objects API. 

Functionality 

• Uploading of a dataset (.dat file). 

Data Input 

• .dat file with all available sensor data as well as all computational and log output of 
 all modules in operation on the car during the recording. 

Interface 

RESTful web interface. 
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5 USE-CASE ANALYSIS 

In order to demonstrate the usage of our proposed framework, we describe some exemplary 
use-cases from section 3 in detail. 

 

• Query global pose: 

Assuming the vehicle has no prior knowledge about its pose in the world, we aim at 
querying the metric-map for a (rough) estimate of the 6DoF pose between the vehicle’s 
frame of reference and some well-defined global frame of reference.  

For this, the Online Localization Module fetches the latest image(s) from the DDS 
message bus and issues a query to the cloud-based backend. Only a Map ID and the 
host-name/IP of the Service Load Balancer are needed as prior knowledge which are 
both assumed to be known in any case. 

 

An HTTP GET web query is issued with the following URL     
http(s)://host/maps/<map_id>/actions/localize 
and the image(s) contained in the data parameter. 

 

The corresponding service endpoint in the backend processes the query by delegating it 
to the Metric Localization & Mapping application. 

The result, namely as 6DoF pose estimate wrt. a well-defined global coordinate frame, is 
returned to the vehicle as a response to the web query in a JSON message. 

 

• Query near-by metric-map data for on-car localization: 

Assuming there is rough estimate of the vehicle’s global pose, close-by landmarks with 
descriptors, or any other metric mapping data, ought to be fetched in order to run local 
localization on the vehicle in the near future. In addition to that, we again assume the 
Map ID as well as the host-name/IP of the Service Load Balancer to be known a priori.  

 

The following HTTP GET web-query is issued: 
http(s)://host/maps/<map_id>/landmarks_with_descriptors 
with the optional parameters pose and potentially radius and yaw_angle_deviation 
specified. 
 

As a result, a JSON message is returned containing the 3D position of the near-by 
landmarks wrt. the global frame of reference together with one or more feature descriptor 
for each landmark. 
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• Upload a dataset for archiving: 

In this use case, we intend to upload a dataset file in the .dat format for later retrieval 
from the cloud object store. The retrieval task assumes that we will be able to resolve the 
object identifier of the cloud object based on characteristic information. This information 
may involve, but does not have to be limited to, a description of the acquisition time and 
location of the dataset. 

 

First, an HTTP POST call with the dataset file will be issued to: 
http(s)://host/objects 
This will store the dataset file in the object store and return the object identifier, e.g., a 
hash value. 
 

Then, another HTTP POST call with a JSON document containing the returned object 
identifier, the time, and the location information will be directed to 
http(s)://host/documents/datasets 
This will store and index the particular document describing the uploaded dataset in the 
datasets document index for later retrieval through the documents search API. 
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6 CONCLUSIONS 

In this document, we have evaluated the requirements for the localization and mapping 
framework, derived concrete specifications thereof, and presented an adequate infrastructure 
and software architecture framework. The proposed set-up guarantees scalability, online and 
offline accessibility and transparency, allowing a conceptual separation between client 
modules located on the vehicle and mapping applications and data in the cloud-based 
backend. Through a RESTful web-interface, a state-of-the-art protocol to issue queries and 
to exchange data is employed.  

The working principle is further illustrated by a detailed analysis of some key use-cases. 
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